

1

Über das Geschäftsmodell SPACE800X

SPACE800X Smart B2B Markt (SMARKT) ist eine Vermittlungsplattform, die Unternehmen
innerhalb der EU eine zentrale Plattform für den Kombinationskauf und -verkauf von
Produkten, Dienstleistungen, Schulungen und Veranstaltungen bietet über ihren eigenen
gebauten multivendoren Marktplatz.

Zielgruppe

• Kleine bis große Unternehmen, die ihre Dienstleistungen und Produkte effizient
anbieten und beziehen möchten.

• Dienstleister wie Berater oder Trainer, die ihre Services über eine transparente
Plattform anbieten wollen.

• Abwicklung nur innerhalb des Binnenmarktes der Europäischen Union

USP (Alleinstellungsmerkmal)

1. Ganzheitlicher Ansatz: Kombination aus Technologie, Schulung und Dienstleistungen in
einem einzigen Marktplatz.

2. Multivendoren-Funktionalität: Käufer können Produkte verschiedener Anbieter
gleichzeitig erwerben.

3. Automatisierte Abrechnung: Steuerrechtlich korrekte Rechnungsstellung inklusive
Reverse-Charge-Verfahren.

4. Kostenstruktur: Anbieter übernehmen sämtliche Drittanbieter-Gebühren alleine,
während Käufer gebührenfrei einkaufen und Space800x unbelastet davonbleibt.

5. Integrierte Prozesse: Automatische Rechnungsstellung für Käufer, Anbieter und
SPACE800X.

6. Gebührenstruktur: Anbieter tragen sämtliche Gebühren; Käufer handeln gebührenfrei.

Hauptmerkmale der Plattform

• Benutzerprofile:
o Ein Benutzer (eine E-Mail) kann mehrere Unternehmen mit separaten PayPal-

Konten verwalten.
o Ein Benutzer kann mehrere Firmen haben. Hauptfirma (Erstfirma) zugeordnet

der E-Mail des Benutzers. Alle anderen Firmen müssen eine andere E-Mail
Adresse haben.

o Jede Firma hat ein individuelles Profil und kann sowohl als Käufer als auch als
Anbieter agieren.

• Sicherheitsmechanismen:

2

o Anbieter müssen ihre Firmen einmal bei Space800x und bei PayPal validieren,
bevor Produkte online verfügbar sind.

o Käufer benötigen keine separate Validierung, aber haben ein PayPal Connect
Account der für sie automatisch angelegt werden soll.

• Transparenz:
o Käufer erhalten rechtskonforme Rechnungen direkt von den Anbietern.
o Anbieter bekommen detaillierte Abrechnungen über PayPal-Gebühren von

Paypal (wenn möglich oder eingefügt in die SPACE800X-Provisionenrechnung.
o Anbieter bekommen eine Provisionsrechnung

3

Technischer Leitfaden – Stripe Tax API
Integration für SPACE800x

Technische Hintergrundinformationen:

Zwei-Sprachigkeit des Systems

• PO-Editor ist eine geeignete Wahl für die Übersetzungsverwaltung. Es ist wichtig, die
Django-Internationalisierungsfunktionalität (django.utils.translation) konsistent zu
verwenden.

Technologische Basis

• Programmiersprache: Python 3.13
• Framework: Django 5.2
• Frontend: Bootstrap 4
• APIs: PayPal Connect API, Stripe Tax

Allgemeine Anforderungen an die Umsetzung:

o Wir benötigen eine schnelle und kostengünstige Lösung, die in der Praxis
umsetzbar ist. Zusätzlich wünschen wir uns eine Varianten-
/Handlungsempfehlung.

o Die Lösung soll pragmatisch, schlank und frei von unnötiger Komplexität oder
hohen Kosten sein.

o Priorität hat eine saubere Implementierung der genannten Punkte mit einer
strukturierten, aber nicht übermäßig komplexen Architektur.

o Nur eine erfolgreiche Umsetzung wird vergütet – nicht der Versuch einer
Umsetzung.

1. Ziel dieses Dokuments

Dieses Leitheft beschreibt die technische Architektur und das Vorgehen zur sicheren Integration
von Stripe Tax in die Multivendor-B2B-Plattform SPACE800x. Ziel ist es, externen Entwicklern
eine präzise Anleitung zu geben, welche Aufgaben umzusetzen sind – unter strikter Einhaltung
unserer Sicherheitsarchitektur und der hier definierten Verantwortlichkeiten.

4

2. Architekturüberblick

Die Berechnung der Umsatzsteuer erfolgt ausschließlich serverseitig. Der Warenkorb (Client)
kommuniziert mit abgesicherten API-Endpunkten. Die interne Steuerlogik, die (De-)
Tokenisierung und sensible Daten bleiben vollständig im Backend von SPACE800x gekapselt.

3. Rollen & Verantwortlichkeiten
• SPACE800x-Team: Verantwortlich für die Gesamtarchitektur, API-Spezifikationen für

interne Dienste, Tokenisierungslogik, Sicherheitsregeln, Datenbankmanagement,
Implementierung der Kern-Steuerlogik, VIES-Validierung, e-Rechnungserstellung
(XRechnung), Cronjobs für Tax-Codes und Kostenüberwachung, sowie alle Aspekte der
PayPal-Integration (durch “Ronny”).

• Externer Entwickler (Ivan): Implementiert ausschließlich die in Abschnitt 5 klar
zugewiesenen API-Endpunkte gemäß den hier definierten Schnittstellen. Greift nicht in die
Steuerlogik, Datenbankstruktur (außer definierter Lesezugriff) oder Kern-Geschäftslogik
ein.

• Hauptentwickler SPACE800x: Review, Abnahme und Merge der vom externen Entwickler
bereitgestellten Komponenten ins Produktivsystem.

4. Technische Vorgaben & Architekturprinzipien
• Steuerberechnung und -logik (inkl. Aufrufe der Stripe Tax API tax.calculate und

tax.transaction.create) erfolgen ausschließlich im Backend von SPACE800x und sind nicht
Aufgabe des externen Entwicklers.

• Kommunikation der vom externen Entwickler zu erstellenden API-Endpunkte erfolgt über
abgesicherte Mechanismen mit Authentifizierung und IP-Filter (Details sind vom
SPACE800x-Team bereitzustellen und vom externen Entwickler zu implementieren).

• Tokenisierung: Steuercodes, Käufer-IDs und Vendor-IDs werden von SPACE800x intern
tokenisiert, bevor sie an die vom externen Entwickler zu implementierenden APIs
übergeben werden. Die (De-)Tokenisierungslogik liegt intern bei SPACE800x.

5

• Datenbankzugriff des externen Entwicklers: Ausschließlich lesender Zugriff auf
vordefinierte Tabellen (z.B. Produktkategorien, Tax-Tokens, falls für die API-
Implementierung benötigt und von SPACE800x explizit freigegeben). Kein direkter
Schreibzugriff auf die Datenbank. Kein Zugriff auf Kern-Datenbanktabellen oder
Geschäftslogik.

• Alle API-Schlüssel (Stripe, etc.) werden serverseitig und intern von SPACE800x verwaltet
und sind für den externen Entwickler nicht zugänglich.

5. Umsetzungsschritte für den externen Entwickler

Der externe Entwickler ist für die Implementierung der folgenden API-Endpunkte und
Prozessschritte verantwortlich:

5.1. API-Endpunkt /api/calculate-tax implementieren

• Zweck: Nimmt Warenkorbdaten entgegen und initiiert die serverseitige Steuerberechnung
durch Aufruf eines internen SPACE800x-Dienstes.

• Input (Request-Body, z.B. JSON): Die genauen Datenstrukturen sind von SPACE800x zu
spezifizieren.

– warenkorb_id: Eindeutige ID des aktuellen Warenkorbs.

– kaeufer_id_token: Tokenisierte Käufer-ID.

– positionen: Array von Warenkorbpositionen, jeweils mit:

• produkt_id_token: Tokenisierte Produkt-ID.

• menge: Anzahl.

• vendor_id_token: Tokenisierte Vendor-ID für diese Position.

– (SPACE800x-Team muss klären, ob weitere Daten wie Lieferadress-Token o.ä.
benötigt werden, oder ob diese serverseitig über kaeufer_id_token aufgelöst
werden.)

• Verarbeitung:

1. Validierung der Input-Daten.

2. Aufruf eines von SPACE800x bereitgestellten internen Dienstes/Funktion (z.B.
interne_steuerberechnung_anfordern(daten)). Die genaue Schnittstelle (Endpunkt,
Parameter, Authentifizierung) zu diesem internen Dienst ist von SPACE800x zu
definieren.

3. Der externe Entwickler ruft nicht direkt die Stripe Tax API auf.

• Output (Response-Body, z.B. JSON): Die genauen Datenstrukturen sind von SPACE800x zu
spezifizieren.

– gesamtsumme_inkl_steuer_pro_anbieter: Objekt oder Array, das pro (tokenisierter)
Vendor-ID die berechneten Steuern und den Gesamtbetrag ausweist (diese Daten
kommen vom internen SPACE800x-Dienst).

– plattformgebuehren: Plattformgebühren müssen berchnet werden, diese sind 10%
vom Nettoumsatz plus 10 Euro je Transakation.

6

• Sicherheit: Implementierung der von SPACE800x vorgegebenen Authentifizierungs- und IP-
Filtermechanismen für diesen Endpunkt.

5.2. Datenübergabe für PayPal-Checkout vorbereiten

• Zweck: Bereitstellung der notwendigen Betragsinformationen für den von Ronny
(SPACE800x-Team) verantworteten PayPal-Checkout-Prozess.

• Verarbeitung: Die vom /api/calculate-tax Endpunkt (bzw. dem internen SPACE800x-Dienst)
erhaltenen Steuerbeträge, Gesamtbeträge je Anbieter und Plattformgebühren müssen in
einem von SPACE800x (Ronny) definierten Format und über eine definierte Schnittstelle an
den PayPal-Prozess übergeben werden.

• Die genaue Art dieser Übergabe (z.B. direkter Funktionsaufruf, interner Event, temporäre
Speicherung mit Lesezugriff für Ronnys Prozess) ist von SPACE800x zu spezifizieren.

5.3. API-Endpunkt /api/finalize-transaction (oder ähnlich benannt) implementieren

• Zweck: Wird nach erfolgreicher PayPal-Zahlung durch einen von SPACE800x (Ronny)
konfigurierten PayPal-Webhook aufgerufen, um die Transaktion bei Stripe Tax zu
registrieren (via internem Dienst).

• Input (Request-Body, z.B. JSON, vom PayPal-Webhook): Die genauen Datenstrukturen
sind von SPACE800x (Ronny) zu spezifizieren.

– paypal_transaktions_id: Die Transaktions-ID von PayPal.

– warenkorb_id oder space800x_bestell_id: Eine Referenz zur ursprünglichen
Bestellung/Warenkorb in SPACE800x.

• Verarbeitung:

1. Validierung der Input-Daten und der Webhook-Signatur (falls von SPACE800x
gefordert und Mechanismus bereitgestellt).

2. Aufruf eines von SPACE800x bereitgestellten internen Dienstes/Funktion (z.B.
interne_stripe_transaktion_melden(daten)). Diese interne Funktion ist verantwortlich
für den eigentlichen tax.transaction.create Aufruf bei Stripe. Die genaue Schnittstelle
ist von SPACE800x zu definieren.

3. Der externe Entwickler ruft nicht direkt die Stripe Tax API auf.

• Output (Response an den PayPal-Webhook):

– HTTP 200 OK, wenn der Aufruf an den internen Dienst erfolgreich war.

– Ein entsprechender HTTP-Fehlercode, falls die Anfrage an den internen Dienst nicht
erfolgreich weitergeleitet werden konnte.

– (Das detaillierte Fehlerhandling des tax.transaction.create Aufrufs selbst, inkl. Retries
und DLQ, ist Aufgabe der internen SPACE800x-Logik.)

• Sicherheit: Implementierung der von SPACE800x vorgegebenen Sicherheitsmechanismen
für diesen Webhook-Endpunkt.

5.4. Einhaltung aller API-Sicherheitsregeln

• Strikte Einhaltung der von SPACE800x vorgegebenen Sicherheitsrichtlinien.

7

• Insbesondere kein Logging von sensiblen Daten (Payloads, Tokens, persönliche
Informationen) durch die vom externen Entwickler erstellten Komponenten.

6. Hinweise zur Zusammenarbeit & Freigabeprozess

Alle Ergebnisse des externen Entwicklers werden durch den internen Lead Developer (Rinny)
von SPACE800x überprüft und abgenommen. Der externe Entwickler arbeitet ausschließlich an
den klar dokumentierten und in Abschnitt 5 zugewiesenen API-Endpunkten und Schnittstellen.
Änderungen am Datenmodell, der Authentifizierung für interne Systeme oder der Kern-
Geschäftslogik sind nicht zulässig und nicht Teil des Auftrags.

7. Zeitrahmen & Aufwandsschätzung (für den externen Entwickler)

Die Umsetzung der in Abschnitt 5 beschriebenen Aufgaben bzw. im Abschnitt „Leitheft“ für den
externen Entwickler (API-Endpunkte /api/calculate-tax, /api/finalize-transaction, Vorbereitung
Datenübergabe an PayPal) ist auf maximal 2 Arbeitstage (ca. 12–16 Stunden) angesetzt plus 1
Tag für die beiden XInvoices plus 0,8 Tage Puffer und 0,2 Tage für Einrichtung der Stripe
Steuerfunktion für SPACE800X und Anbieter (insgesamt maximal 32 Stunden).

Grundlage dafür ist, dass:

• Alle Datenbanktabellen, auf die ggf. lesend zugegriffen werden muss (Produktkategorien,
Tax-Tokens), bereits vorhanden und von SPACE800x definiert sind.

• Die komplexen internen Steuerlogik-Dienste, die von den externen API-Endpunkten
aufgerufen werden, von SPACE800x bereitgestellt und deren Schnittstellen klar spezifiziert
sind.

• Der externe Entwickler keine eigene Architektur entwirft oder steuerrechtliche
Entscheidungen trifft, sondern lediglich die API-Anfragen und -Antworten korrekt nach
Spezifikation implementiert.

Die folgenden Abschnitte sind dem ursprünglichen Dokument
“Leitfaden_STRIPE_TAX_Implementierung_Steuern_e-Invoices_Updated.docx” entnommen und
dienen als Hintergrundinformation. Die darin beschriebenen Prozesse sind, wo nicht explizit in
Abschnitt 5 bzw. Abschnitt „Leitheft“ als Aufgabe des externen Entwicklers genannt, als interne
Verantwortlichkeit von SPACE800x zu verstehen und werden entsprechend den oben
genannten Prinzipien umgesetzt.

Task 1: Ivan alleine

8

Onboarding für Stripe Tax Anwendung
(Interner Prozess SPACE800x)
Stripe Tax kann auch ohne Stripe-Zahlungsabwicklung genutzt werden. Dafür ist aber ein
„kurzes Onboarding" aller unserer User erforderlich, um die Steuerkonfiguration vorzunehmen.
Wir können über die API Steuerberechnungen durchführen und müssen Stripe manuell über
abgeschlossene Transaktionen informieren.

Automatisiertes Onboarding für Stripe Tax (Interner Prozess SPACE800x)

Um die Anbieter automatisch in Stripe Tax zu integrieren, erfolgt ein Onboarding während des
zweiten Registrierungsprozesses auf unserer Plattform und wenn der User (eine) weiter(e)
Firma/(-en) zu seinem Profil mit weiteren Email Adresse zuordnen. Der Prozess sieht wie folgt
aus:

1. Firma anlegen (Registrierung)

– Beim Anlegen einer neuen Firma gibt der Nutzer alle relevanten Informationen an:
Name, Adresse, Email je Firma, Steuer-ID und Produktkategorien.

– Diese Daten werden in unserer Datenbank gespeichert.

2. Automatische Anlage in Stripe Tax (Interner Aufruf via Backend-Logik)

– Nach erfolgreicher Registrierung sendet unser System (Backend-Logik) die
Steuerdaten an Stripe Tax über die API (tax.settings.update).

– Falls erforderlich, kann der Anbieter später über eine separate Schnittstelle seine
Steuerkonfiguration aktualisieren.

3. Zusätzliche Firmen über das Firmenanlegeprofil (Interner Prozess SPACE800x)

– Wenn ein Nutzer eine weitere Firma anlegt, werden dieselben steuerlichen
Informationen abgefragt.

– Nach Abschluss der Eingabe wird die Firma automatisch in Stripe Tax registriert (via
Backend-Logik).

4. Validierung der Steuerinformationen (Interner Prozess SPACE800x, ggf. mit VIES)

– Falls eine Umsatzsteuer-ID hinterlegt wird, kann Stripe eine Validierung
durchführen. Zusätzlich erfolgt die VIES-Validierung durch SPACE800x.

– Falls keine USt-IdNr. vorhanden ist, wird die Steuer nach Standardrichtlinien
berechnet.

5. Zuweisung der Produktsteuercodes (Interner Prozess SPACE800x)

– Basierend auf den gewählten Produktkategorien und den internen Mappings zu
Stripe Tax Codes werden passende Steuerklassen zugewiesen.

6. Benachrichtigung und Aktivierung (Interner Prozess SPACE800x)

– Nach erfolgreicher Einrichtung erhält der Nutzer eine Bestätigung.

– In seinem Dashboard kann er ggf. steuerliche Einstellungen anpassen.d

9

10

Hintergrundinformationen: Ivan und Ronny

Ablauf der Integration
1. Steuerberechnung im Warenkorb (Externer API-Call an /api/calculate-tax, interne Logik

führt Stripe Call aus)

– Wenn ein Kunde Produkte in den Warenkorb legt, ruft das Frontend den vom
externen Entwickler erstellten Endpunkt /api/calculate-tax auf. Dieser leitet die
Anfrage an die interne SPACE800x-Steuerlogik weiter, welche die Steuern mit der
tax.calculate API von Stripe berechnet.

– Dies verursacht keine Kosten, solange wir unter den 10 inkludierten API-Calls pro
Transaktion bleiben. Ivan bitte überprüfe das noch einmal!!!!!

2. Bezahlung über PayPal (Interner Prozess SPACE800x - Ronny)

– Der Kunde wählt PayPal als Zahlungsmethode und schließt die Zahlung dort ab.

– PayPal wickelt die Zahlung ab.

3. Manuelle Meldung an Stripe nach erfolgreicher Zahlung (PayPal Webhook an externen
API-Call /api/finalize-transaction, interne Logik führt Stripe Call aus)

– Sobald die Zahlung erfolgreich ist, sendet PayPal einen Webhook an den vom
externen Entwickler erstellten Endpunkt /api/finalize-transaction.

– Dieser Endpunkt leitet die Anfrage an die interne SPACE800x-Steuerlogik weiter,
welche eine abgeschlossene Transaktion an Stripe über die tax.transaction.create API
meldet.

– Erst an dieser Stelle fallen Kosten für Stripe an (z.B. 0,45€ pro Transaktion, Stand
Mai 2025).

4. Abrechnung durch Stripe (Interner Prozess SPACE800x)

– Stripe stellt eine separate Rechnung für die Nutzung von Stripe Tax an SPACE800x.

– Die Gebühren entstehen nur für gemeldete Transaktionen und sind
Umsatzsteuerbefreit.

– Um die Kosten auf die Anbieter umzulegen, implementiert SPACE800x eine
Weiterberechnung im eigenen System.

Kosten (Information für SPACE800x):

• Pro abgeschlossener Transaktion mit Steuerberechnung via tax.transaction.create: z.B. 0,45
€ (Stand Mai 2025, Preis von Stripe prüfen).

• Zusätzliche API-Aufrufe für tax.calculate: Jede Transaktion enthält eine bestimmte Anzahl
inkludierter API-Aufrufe (z.B. 10), danach können weitere Aufrufe kosten (z.B. 0,04 € pro
API-Call, Stand Mai 2025, Preis von Stripe prüfen).

• Die Stripe Kosten müssen von SPACE800x regelmäßig überprüft und die internen
Kalkulationen ggf. angepasst werden. Der interne Cron-Job zur Zählung der API-Aufrufe
dient der Kostenkontrolle und -weiterberechnung.

11

Wichtige Erkenntnisse (Für SPACE800x)

• Keine automatische Verbindung zu PayPal: Stripe erfährt nicht automatisch von einer
erfolgreichen Zahlung und verlässt sich auf die Meldung durch SPACE800x.

• Ehrliches Reporting erforderlich: SPACE800x ist vertraglich verpflichtet, Stripe über
abgeschlossene Transaktionen zu informieren.

• Keine Gebühren für nicht abgeschlossene Käufe: Wenn ein Kunde den Kauf nicht
abschließt, aber eine Steuerberechnung (tax.calculate) erfolgt ist, entstehen keine Kosten,
solange die Freigrenze für API-Aufrufe nicht überschritten wird.

• Kostenübertragung auf Anbieter: Muss intern durch SPACE800x implementiert werden.

12

Implementierung des Projektes (Aufgabe)
Leitfaden zur Implementierung von Steuerberechnungen, e-Invoices und PayPal-
Integration (Hintergrund und interne Entscheidungen SPACE800x)

Deine Hauptaufgaben:

1. API-Endpunkt /api/calculate-tax erstellen.
2. Daten für PayPal-Checkout vorbereiten.
3. API-Endpunkt /api/finalize-transaction erstellen.
4. Sicherheitsregeln beachten.

Überblick über Dein Gesamtprojekt:

1. Internes Onboarding für Stripe Tax (via tax.settings.update) implementieren.

2. Schnittstellen für externe API-Endpunkte (/api/calculate-tax, /api/finalize-transaction) und
interne Steuerlogik-Dienste definieren.

3. Externe API-Endpunkte durch externen Entwickler implementieren lassen.

4. Interne Steuerlogik-Dienste (Aufrufe an tax.calculate, tax.transaction.create, Fehlerhandling)
implementieren.

5. PayPal-Integration (Webhook-Konfiguration) durch Ronny.

6. VIES-Validierung implementieren.

7. XRechnungs-Erstellung und -Versand implementieren.

8. Mechanismus zur Kostenweitergabe an Anbieter entwickeln.

9. Cron-Jobs für Tax-Code-Management und Kostenüberwachung implementieren.

10. Testen des gesamten Workflows und Überprüfung der Abrechnungen durch Stripe.

13

Tools- Überblick

1. Stripe Tax

Stripe Tax ist ein API-Dienst, der Steuerberechnungen auf Basis der Umsatzsteuer-IDs von
Anbietern und Käufern ermöglicht. Es bietet Unterstützung für das EU-Reverse-Charge-
Verfahren und kann Produktkategorisierungen in die Steuerlogik einbeziehen.

Kompatible Funktionen
- Steuerberechnung basierend auf Umsatzsteuer-IDs: Die API ermöglicht die präzise

Berechnung von Steuern je nach Käufer- und Verkäuferdaten.

- Produktkategorisierung: Unterschiedliche Steuersätze können basierend auf den

Produktkategorien angewendet werden (z. B. digitale Produkte vs. physische Waren).

- Reverse-Charge-Verfahren: Steuerlogik wird entsprechend den B2B-Regeln der EU

automatisch angepasst.

- Flexibilität für Multivendor-Szenarien: Die API ermöglicht die Berechnung von Steuersätzen

für mehrere Anbieter innerhalb eines Warenkorbs.

www.stripe.com

2. e-Invoice-Lösung (Interne Implementierung SPACE800x)

Anforderung: XRechnung ist für die e-Rechnungserstellung zu verwenden. Umsetzung:
SPACE800x wählt eine geeignete Python-basierte Open-Source-Bibliothek (z.B. Erweiterungen
für PyUBL, oder andere die XRechnung-konforme XML-Dateien erzeugen können) und
implementiert die Logik zur Erstellung der rechtsreformen XRechnungen. Die Rechnungen
werden in der SPACE800x-Datenbank gespeichert und den Nutzern im Dashboard sowie per E-
Mail zugestellt.

API-Link

• ubl2 Python Library
• xmlschema für XML-Prozesse
• GitHub: https://github.com/h3/django-simple-invoice
• GitHub: https://github.com/lincolnloop/django-invoice

Falls eine andere Open-Source- oder kostenlose E- bzw. X-Invoice-Lösung bevorzugt wird oder
positive Erfahrungen mit einer bestehenden Lösung vorliegen, sind wir dafür offen. Wir sind
nicht auf die vorgeschlagene Lösung festgelegt.
Wichtig ist lediglich, dass keine laufenden Kosten entstehen, um die Kosten für unsere

http://www.stripe.com/
https://pypi.org/project/ubl2/
https://pypi.org/project/xmlschema/
https://github.com/h3/django-simple-invoice
https://github.com/lincolnloop/django-invoice

14

Kunden so niedrig wie möglich zu halten und alle Anforderungen eingehalten werden (Logo,
Rechnungsnummer, Adresse, Ust.-ID-Nr.,usw.)

3. Nutzung der VIES API (Interne Implementierung SPACE800x)

Die VIES API dient zur Validierung von Umsatzsteuer-IDs und ist für das Reverse-Charge-
Verfahren unerlässlich. Die API prüft die Gültigkeit der Umsatzsteuer-ID des Käufers.
Umsetzung: SPACE800x implementiert die Abfrage der VIES API (ein SOAP-Service, z.B. mittels
der Python-Bibliothek zeep) im Warenkorbprozess vor der finalen Steuerberechnung. Die
Ergebnisse fließen in die Steuerlogik ein. Bei ungültiger Käufer-USt-IdNr. wird der Kaufprozess
gestoppt und der Käufer zur Korrektur aufgefordert. Bei Problemen mit Verkäufer-USt-IdNrn.
(z.B. beim Onboarding) wird der Verkäufer informiert.

API-Link

VIES API

https://ec.europa.eu/taxation_customs/vies/

4. Einbindung in den PayPal Checkout (Interne Implementierung SPACE800x - Ronny)

Die Steuerberechnung und Validierung der Umsatzsteuer-IDs müssen nahtlos in den PayPal-
Checkout eingebunden werden. Umsetzung: Ronny (SPACE800x-Team) ist verantwortlich für
die PayPal-Integration. Dies beinhaltet die Konfiguration des PayPal-Webhooks, der nach
erfolgreicher Zahlung den vom externen Entwickler erstellten Endpunkt /api/finalize-transaction
aufruft.

5. Preise (Information für SPACE800x)

• Stripe Tax: Kosten pro Transaktion (z.B. 0,45 € für tax.transaction.create) und ggf. für
zusätzliche tax.calculate Aufrufe. Preise sind bei Stripe zu verifizieren.

• VIES API: Kostenlos.

• XRechnungen: Open Source, keine Lizenzkosten für die Bibliothek selbst.

https://ec.europa.eu/taxation_customs/vies/

15

Schritt für Schrittanleitung für die
Entwicklungsarbeit
Übersicht der Schritte für die Integration

1. Schritt: Datenübermittlung an die API:

• Übergeben Sie folgende Informationen an die Stripe-API:

 - Käuferdetails (inkl. Umsatzsteuer-ID).

 - Verkäuferdetails (inkl. Umsatzsteuer-ID).

 - Produktdetails (Kategorie, Preis, Menge).

 - Versand- und Rechnungsadressen.

2. Schritt: Validierung der Umsatzsteuer-IDs:

• Nutzen Sie die VIES API, um die Gültigkeit der Umsatzsteuer-IDs sicherzustellen.

• Übergeben Sie die validierten IDs an die Stripe-API zur Steuerberechnung.

3. Schritt: API-Aufruf für Steuerberechnung:

• Rufen Sie die Stripe-API mit den bereitgestellten Daten auf, um den Steuersatz oder das

Reverse-Charge-Verfahren zu bestimmen.

4. Schritt: Integration in den Warenkorb:

• Aktualisieren Sie die Warenkorbanzeige mit den berechneten Steuern für jeden Vendor.

• Speichern Sie die berechneten Steuern für die spätere Rechnungsstellung.

5. Schritt: Checkout-Integration

• Die Steuerberechnung und Validierung der Umsatzsteuer-IDs müssen nahtlos in den

PayPal-Checkout integriert werden:

1. Implementieren Sie einen Webhook, um Transaktionsdetails von PayPal zu
empfangen.
2. Übergeben Sie die Käufer- und Verkäuferdaten sowie Produktdetails an die
Stripe-API.
3. Integrieren Sie die berechneten Steuern in den Checkout-Flow und die finale
Zahlungsanzeige.
4. Generieren Sie die e-Invoice basierend auf den berechneten Steuerdaten.

16

Task 2: Ivan und Ronny

Stripe Steuerberechnung, Multi-Vendor Warenkorb und Checkout
Übergabe zu PayPal in Python Django

 1. Anforderungen und Zielsetzung
- Automatisierung der Steuerberechnung für verschiedene Produktarten (Seminare, Downloads,

Dienstleistungen, Technologien).
- Unterstützung für Multi-Vendor Warenkörbe mit individuell berechneten Steuersätzen je

Anbieter und Produkt.
- Integration von Stripe für:

o Verifizierung der VAT-ID für Anbieter und Käufer.
o Automatisierte Steuerberechnung basierend auf Produktkategorien und Produktarten,

Ländern und B2B-Regeln.
o Aktualisierung von Steuercodes bei Änderungen durch Stripe.
o Integration von PayPal für den Checkout.
o Erstellung und Verwaltung von Rechnungen für:

- Kunden (inkl. Mehrwertsteuer).
- Anbieter (mit Abzug von Plattformgebühren und Mehrwertsteuer).

2. Erweiterung der Datenbank und Middleware-Integration
Erweiterung der Datenbank und Middleware-Integration

A. Anpassung der Datenbanktabellen

Der Entwickler muss die Datenbank erweitern und eine Middleware implementieren, um die
Daten stets aktuell zu halten:

• Die vier bestehenden Datenbanklisten der Produktarten je Produdukgruppe verknüpfen

mit der Stripe Codes Datenbank, damit die Produktarten den entsprechenden Stripe-

Steuercodes zugeordnet werden können.

• Die zugeordneten Stripe Produksteuercodes https://docs.stripe.com/tax/tax-

codes?locale=de-DE&tax_code=Paperwork sollen automatisch anhand der Stripe API

Kategorie https://docs.stripe.com/api/tax_codes/list verknüpft und in der Datenbank

gespeichert werden, um die Steuerberechnung im Warenkorb zu ermöglichen.

Unsere Produktkategorien sind:

• Seminare (z. B. der Produktart Online/Präsenz)

• Dokumente (z. B. der Produktart Patente, Berichte)

• Technologieprodukte (z. B. der Produktart Agrarroboter, KI)

• Dienstleistungen

https://docs.stripe.com/tax/tax-codes?locale=de-DE&tax_code=Paperwork
https://docs.stripe.com/tax/tax-codes?locale=de-DE&tax_code=Paperwork
https://docs.stripe.com/api/tax_codes/list

17

Je Produktkategorien gibt es Produktarten, wie z. B:

Produktarten der Produktkategorie
Seminare:

B2B Event (präsenz)

Konferenz (präsenz)

Round Table (präsenz)

Seminar - Online Präsenz (remote)

Seminar (präsenz)

Seminar (remote & präsenz)

Videokonferenz (remote)

Virtuelles Meeting (remote)

Workshop - Online Präsenz (remote)

Workshop (präsenz)

Workshop (remote & präsenz)

• Bei den Services sind die Produktarten die Liste Geschäftsbereiche und Geschäftsfelder

• Bei der Technologie ist es die Liste Technologiearten

• Bei Ressourcen gibt es folgende Arten:

Patent

Studien

Präsentation

Anleitung

Formular

Workpaper

Liste

Bericht

Vorlage

Kalkulationssheet

Vertragsvorlage

18

Aufbau der Datenstruktur:

o Erstelle eine Tabelle und übernehme den Aufbau von Stripe

o Erstelle eine Tabelle, die folgende Spalten enthält:

Produktkategorie
(Smarkt) Stripe

Steuercode
Kategoriename

Diesen
Steuercode
verwenden

für

Kategorietyp
(stripe)

o Füge eine Spalte vor der Spalte Steuercode ein. Dies erste Spalte
muss auf die Listen der Produktarten je Produktkategorie
zurückgreifen.

Datenintegration:

o Implementiere eine Schnittstelle zur Stripe-API, um die aktuellen Steuercodes
abzurufen und in die Tabelle zu importieren.

Produktformular mit Filtern versehen:

• Jedes Produktformular bekommt intern eine fest zugewiesene Stripe Kategorie
zugewiesen:

➔ Events -> Schulungen

➔ Service ->Dienstleistungen

19

➔ Tec-Produkt -> Digitale Produkte, Physische Waren

➔ Ressourcen -> Digitale Produkte

• Diese Kategorie wird automatisch je Anlegeformular als Filterwert gesetzt, sobald das
Formular geladen wird.

• Jedes Produktformular hat als Standard eine bestimmten folgende Steuercode
Voreinstellung hinterlegt welche vom Kunden bestätigt werden muss oder geändert
werden kann:

Service Product txcd_20030000 Allgemeine Kategorie für Dienstleistungen. Sollte nur
verwendet werden, wenn keine spezifischere
Dienstleistungskategorie vorhanden ist. In der
Europäischen Union ist die Standardregel für
Business-to-Consumer-Verkäufe (B2C) der Standort
des Verkäufers/der Verkäuferin, während für
Business-to-Business-Verkäufe (B2B) der Standort des
Käufers/der Käuferin gilt.

Technologien
(keine Software)

Physische
Ware

txcd_99999999 "physical","Eine physisches Ware, die bewegt oder
berührt werden kann. Wird auch als materielles
persönliches Eigentum bezeichnet.","Allgemein –
Materielle Güter"

Schulungen Event txcd_20060044 Eine Zahlung für Schulungen, in denen der/die
Käufer/in Anweisungen erhält. Dies umfasst
Schulungen oder Workshops, körperliche Übungen
und Workouts sind jedoch ausgeschlossen.

Ressourcen Digitaler
Download

txcd_10503000 Digitale oder andere Nachrichten bzw. Dokumente
(Download, ohne Abonnement) mit dauerhafter
Rechteübertragung

Suchfunktion:

o Entwickle eine Suchfunktion, mit der Kunden nach spezifischen Steuercodes
suchen können je Produktkategorie suche kann. Die Suchergebnisse sollten dann
automatisch den passenden Steuercode in der Tabelle anzeigen.

20

• Manuelle Zuordnung:

o Wenn die Voreinstellung nicht passt, ermögliche es dem Kunden für diesen Fall,
den passenden Steuercode für seine Produktart manuell auszuwählen.

B. Erweiterung des Produktanlegungsformulars (Ronny)

• Jedes Produktformular hat als Standard einen bestimmten Steuercode als Voreinstellung

hinterlegt welche vom Kunden bestätigt werden muss oder geändert werden kann.

• Suchfunktion, mit der Kunden nach spezifischen Steuercodes suchen können je

Produktkategorie suche kann

• Die Produktkategorien je Produktanlegungsformular aus einer Drop-down-Liste (Daten

aus der ProductCategory-Tabelle) auswählbar sind.

• Die vier bestehenden Listen im Hintergrund erweitert werden, indem den Produktarten

die entsprechenden Stripe-Steuercodes zugeordnet werden.

• Der Steuercode automatisch anhand der Kategorie verknüpft und gespeichert wird.

• Die ausgewählten Steuercodes pro Produktart in der Datenbank gespeichert werden, um

die Steuerberechnung im Warenkorb zu ermöglichen.

• Durch die Auswahl der Produktart durch den Benutzer wird dem Produkt automatisch der

richtige Steuercode zugeordnet.

C. Technische Umsetzung

Die Listen für Produktarten existieren bereits als zweisprachige (Deutsch/Englisch) Dropdown-
Funktionen. Allerdings fehlen noch die Beschreibungen und die Verknüpfung mit den Stripe Tax
Codes und Stripe Produktkategorien.

21

Aufgaben:

• Verknüpfe die Stripe Tax Code Liste via APIs

• Stell sicher, dass die Listen mit der vollständigen Stripe Tax Code-Liste synchronisiert sind.

• Middleware entwickeln, die sicherstellt, dass die Tax Codes stets aktuell bleiben.

API-Integration:

Die Stripe API wird verwendet, um die Steuercodes regelmäßig zu aktualisieren.

E. Stripe API-Integration

1. Stripe API Documentation

• Einstiegspunkt für alle Stripe-APIs.

2. List Tax Codes API

• Abruf der vollständigen Liste aktueller Steuercodes.

3. Stripe Tax Code Search Tool

• Online-Tool zur direkten Suche nach Steuercodes.

Hinweise zur API-Nutzung:

• Sandbox-Umgebung: https://api.stripe.com (für Tests)

• Produktionsumgebung: https://api.stripe.com (für Live-Anwendungen)

Ressourcen:

• Stripe Tax API: Stripe Tax API Dokumentation

• API-Referenz: Stripe API Referenz

22

Task 3: Ivan

Multi-Vendor Warenkorb

1. Abrechnung

• Separate Abrechnung je Anbieter: Jeder Anbieter im Warenkorb wird separat
abgerechnet.

2. Steuerberechnung mit Stripe Tax

2.1 Grundlagen der Steuerermittlung

• Automatische Steuerberechnung durch Stripe basierend auf:
o Produktkategorie / Produktart (vgl Task 2)
o Standort von Anbieter und Käufer
o Vorhandensein und Verifizierung der VAT-ID (B2B)
o Reverse-Charge-Verfahren (wenn anwendbar)

2.2 Steuerberechnung im Warenkorb (tax.calculate)

• Zeitpunkt: Steuerberechnung erfolgt vor Start des Bezahlvorgangs.
• Datenquellen:

o Käuferdaten: Lieferadresse, VAT-ID
o Verkäuferdaten: Firmensitz, VAT-ID
o Produktdaten: Menge, Preis, Stripe Tax Code

• Verarbeitung:
o Die API-Antwort von tax.calculate wird im Warenkorb dargestellt.

3. VAT-ID-Verifizierung

3.1 Bei Registrierung / Firmenerstellung

• Käufer und Anbieter hinterlegen ihre VAT-ID beim Anlegen der Hauptfirma bzw.
weiterer Firmen.

• Stripe prüft die Gültigkeit automatisch per API.
• Ungültige oder abgelaufene VAT-IDs:

o Käufer: Fehlermeldung im Warenkorb mit Hinweis zur Korrektur im Firmenprofil
(inkl. Direktlink).

o Anbieter: E-Mail-Benachrichtigung mit Aufforderung zur Korrektur. Produkte
werden temporär offline geschaltet, bis gültige VAT-ID eingegeben und von

23

Stripe validiert wurde. (Muss noch implementiert werden, eigenes Ticket
erforderlich.)

3.2 Zeitpunkt der Verifizierung

• Die VIES-Validierung der Käufer-VAT-ID erfolgt im Warenkorb, vor der finalen
Steuerberechnung mit Stripe Tax.

 Integration mit Stripe

• API-Aufrufe:
o Tax Code Listing API: Zum Abrufen der neuesten Steuercodes und -kategorien.
o VAT-ID Validation API: Verifiziert die eingegebene VAT-ID.
o Transaction Tax API: Berechnet die Steuer basierend auf den Warenkorbdaten.

• Datenstruktur für den API-Call:
o type: "SalesOrder"
o companyCode: "YourCompanyCode"
o lines: Liste der Produkte (SKU, Menge, Preis, Steuerkategorie)
o customerCode: Kundennummer
o addresses: Informationen zur Rechnungsadresse
o e-mail: E-Mailadresse je Firma des Anbieters/Käufers

Achtung: Lieferadresse wird derzeit nicht abgefragt. Diese Abfrage wollen wir
auch nicht, Anbieter liefern nur dahin aus, wo die Rechnungsadresse ist um
Betrug zu minimieren. Die Käufer- und Anbieter-Umsatzsteuer-ID, als auch
Rechnungsadresse wird vom System bereits abgefragt. Meines Wissen nach
vergeben wir im klassischen Sinne keine Customer-Kundennummer aber diese
müsste durchnummeriert sein, was als Customer code verwendet werden kann.

• Stripe-API: Die CreateTransaction API wird zur Berechnung der Umsatzsteuer verwendet.

Parameter für die API-Anfrage:

• Käuferinformationen: USt.-ID des Käufers
• Anbieterinformationen: USt.-ID des Anbieters
• Produktdetails:

o Steuergruppe (Tax Code)

24

o Preis
o Stückzahl

Task 3: Ronny und Ivan

Checkout mit PayPal
- Nach der Berechnung der Steuern durch Stripe wird der Gesamtbetrag an PayPal übergeben.

API von PayPal nutzen.
- Verwendung des PayPals REST SDKs für Python.

• Übergabe der berechneten Steuern und Plattformgebühren an PayPal.

• Nach erfolgreicher Zahlung: Manuelle Meldung an Stripe tax.transaction.create):

o Trigger: Ein PayPal Webhook signalisiert eine erfolgreich abgeschlossene
Zahlung. Dieser Webhook wird von "Ronny" konfiguriert und ruft einen
Endpunkt des vom externen Entwickler erstellten Moduls auf.

o Daten für die Meldung: Die PayPal Transaktions-ID (von PayPal Webhook
geliefert) und weitere notwendige Referenzdaten zur Transaktion (aus Ihrer
Datenbank, z.B. die ID der ursprünglichen Steuerkalkulation oder Warenkorb-ID).

o Fehlerbehandlung (Vorschlag):
▪ Logging: Jeder Versuch und jedes Ergebnis des tax.transaction.create Aufrufs

muss detailliert geloggt werden.
▪ Retry-Mechanismus: Bei Fehlschlägen (z.B. Netzwerkprobleme,

temporäre Stripe-API-Unerreichbarkeit) sollte ein automatischer Retry-
Mechanismus mit exponentiellem Backoff implementiert werden (z.B.
nach 1 Min, 5 Min, 15 Min, 1 Std.).

▪ Dead-Letter-Queue (DLQ) / Manuelle Intervention: Nach einer
definierten Anzahl erfolgloser Retries (z.B. 3-5 Versuche) sollte die
fehlgeschlagene Meldung in eine separate Warteschlange oder Tabelle
(eine Art DLQ) verschoben und eine Benachrichtigung an einen
Administrator ausgelöst werden, um eine manuelle Prüfung und ggf.
Korrektur und erneute Meldung zu ermöglichen.

▪ Idempotenz: Stellen Sie sicher, dass tax.transaction.create Aufrufe
idempotent gehandhabt werden können, falls Stripe dies unterstützt
(durch Mitgabe einer eindeutigen Idempotenz-ID pro
Transaktionsmeldung), um doppelte Meldungen bei Retries zu
vermeiden.

o Kostenweiterberechnung an Anbieter: Ihr internes System ist dafür
zuständig. Das vom externen Entwickler erstellte Modul muss die
notwendigen Daten (welche Transaktion, welcher Anbieter, welche
Stripe-Kosten) in der Datenbank so speichern, dass Ihr System sie für
die Weiterberechnung abrufen kann.

25

o Aktualisierung der Stripe-Kosten (Cron-Job):

- Verantwortlichkeit: Der externe Entwickler (DevOps) ist für
Erstellung, Deployment und Betrieb des Cron-Jobs verantwortlich.

- Zweck des Cron-Jobs: Die Preise für Stripe Tax ($0.50 pro
tax.transaction.create API-Aufruf, $0.05 pro tax.calculate API-Aufruf,
oder 0.5% des Transaktionsvolumens, wenn Stripe für die
Zahlungsabwicklung und Steuererhebung in registrierten Ländern
genutzt wird – was hier nicht der Fall zu sein scheint, da PayPal
genutzt wird) sind aktuell auf der Stripe-Webseite dokumentiert.
Es gibt keine bekannte Stripe-API, um diese Basispreise dynamisch
abzufragen. Stripe kommuniziert Preisänderungen üblicherweise
direkt.

- Der Cron-Job sollte daher primär dazu dienen, die Anzahl der
durchgeführten tax.calculate und tax.transaction.create Aufrufe pro
Anbieter zu zählen und in der Datenbank zu speichern. Auf Basis
dieser Zählungen und der bekannten (und in Ihrem System
hinterlegten) Stripe-Gebührensätze können dann die Kosten pro
Anbieter berechnet werden.

- Eine manuelle Überprüfung und ggf. Anpassung der im System
hinterlegten Stripe-Gebührensätze ist notwendig, falls Stripe seine
Preise ändert.

Task 4: Ivan

Rechnungsstellung
o Erzeugung einer Rechnung für den Anbieter (mit Abzug der Plattformgebühr und Steuern). Samt

Steuern oder revers-charge für Space800x. Paypal und Stripe sind Finanzdienstleister und damit

Umsatzsteuerbefreit.

o Entscheidung: XRechnung ist erforderlich. Eine passende Open-Source-Bibliothek (z.B.
unter Berücksichtigung von PyUBL oder Alternativen, die XRechnung erzeugen können)
muss ausgewählt werden. Mustangproject (Java) wäre nur über eine API-Einbindung
eine Option, was zusätzliche Komplexität bedeuten könnte. Prüfen Sie Python-basierte
Lösungen für XRechnung.

o Daten für die Rechnungserstellung: Alle notwendigen Daten werden aus Ihrer
Datenbank bezogen.

o Speicherung und Zustellung:

- Generierte XRechnungen werden in einem definierten Format (z.B. XML) in einer

Tabelle Ihrer Datenbank gespeichert.

- Sie werden den Nutzern (Käufer/Verkäufer) im Dashboard zum Download

bereitgestellt.

- Zusätzlich erfolgt ein Versand der Rechnung per E-Mail.

26

-

 Inhalte von Rechnungen:

➔ Anbieterrechnung an Käufer

➔ Space800x-Rechnung an Anbieter

- Alle Rechnungen müssen folgende relevanten Informationen enthalten:

• Logo Space800x / Logo Anbieters

• Name und Adresse des Anbieters / der Plattform

• USt..-ID-Nummer des Anbieter oder der Plattform

• Stückzahl und Produktbezeichnung,

• Höhe der Nettogebühr und die berechnete USt. und Bruttosumme

• Daten der Transaktion

• Fortlaufende Rechnungsnummer je Anbieter oder Plattform

• Wenn Reverse Charge Verfahren eintritt geht die Steuerschuld auf den

Leistungsempfänger über und es erscheint der Satz auf der Rechnung:

"Steuerschuldnerschaft des Leistungsempfängers gemäß § 13b UStG".

• Hinweis auf allen Rechungen muss stehen: „Der Rechnungsbetrag wird

automatisch eingezogen.“

• Alle Mitglieder bekommen eine Rechnung auf Englisch außer die Sprache ist

leicht anpassbar, dann nehmen wir gerne die elegantere Variante.

- Rechnung an Anbieter:

• Für jede Plattformgebühr wird eine Rechnung mit der USt. erstellt. Sollten

die Drittanbieter keine eigene Rechnung schreiben, muss Space800x diese

weiterverrechnen. Wobei ggf zu berücksichtigen ist, dass PayPal nicht

Umsatzsteuerpflichtig ist. Stripe hingegen schon.

• Verkaufssumme abzüglich:

- Netto-Plattformgebühren (zzgl. USt. oder revers-charge Hinweis separat

ausgewiesen)

- Gebühren für Stripe und PayPal. ohne USt.
ACHTUNG: PayPal und Stripe sind Finanzdienstleister und damit
Umsatzsteuerbefreit. Es muss folgenden Hinweissatz diesbezüglich auf
der Rechnung stehen: Leistungen an Finanzdienstleister gemäß §4 Nr. 8
UStG umsatzsteuerbefreit.

27

Bitte sicherstellen, dass dieser Satz korrekt auf der Rechnung
ausgewiesen wird

Die Erstellung von e-Invoices kann mit einer Open-Source-Bibliothek PyUBL erfolgen. PyUBL
ermöglicht die Generierung von Rechnungen im standardisierten UBL-Format. Alternativ
können Bibliotheken wie xmltodict verwendet werden.

Integration der e-Invoice-Lösung

1. Steuerberechnungen und Produktkategorisierungen werden über Stripe durchgeführt.

2. Umsatzsteuer-IDs werden über die VIES API validiert.

3. Rechnungen werden mit PyUBL im UBL-Standard generiert und können digital weitergeleitet

werden.

4. Diese Lösung erfüllt gesetzliche Anforderungen an e-Rechnungen in der EU.

Zusammenfassung der Anforderungen für den Entwickler

➔ Eine XML-basierte XRechnung generieren
➔ Den richtigen UBL- oder UN/CEFACT-Standard verwenden
➔ Pflichtangaben wie Rechnungsnummer, Datum, Steuer, Kunden- und

Lieferantendaten einhalten
➔ Finanzdienstleister-Hinweis für PayPal & Stripe integrieren

Validierung der erstellten XML-Rechnung durchführen

Wartung der Steuercodes
- Stripe-APIs ermöglichen regelmäßige Updates der Steuercodes.
- Ein Cron-Job kann implementiert werden, um die neuesten Daten regelmäßig in die Django-

Datenbank zu laden.

Task 4: Ivan

Steuererklärung der Plattform:

Schritt 1: Plattformgebühren korrekt abwickeln

• Umsatzsteuer auf Plattformgebühren:
o Stripe berechnet die Umsatzsteuer auf unserer Plattformgebühren basierend auf

dem Sitz des Anbieters (Reverse-Charge-Verfahren bei grenzüberschreitenden
B2B-Transaktionen innerhalb der EU).

28

o Erfassen Sie diese Daten in Stripe und übermitteln Sie sie automatisch an das
Finanzamt.

• Meldung und Zahlung:
o Nutzen von Stripe, um die Umsatzsteuer der Plattformgebühren korrekt im OSS

(One-Stop-Shop) oder in nationalen Steuererklärungen zu melden.

Schritt 2: Meldung der Anbieter-Umsätze

Die Umsätze der Anbieter müssen ebenfalls wie folgt an die Steuerbehörden gemeldet werden:

• Transaktionsdaten erfassen:
o Richten Sie auf Ihrer Plattform Mechanismen ein, um die folgenden Daten für

jede Transaktion zu erfassen:
▪ Verkäufer (Anbieter) und dessen USt-IdNr.
▪ Käufer und dessen USt-IdNr. (verfügbar).
▪ Land des Kaufs (Bestimmungsland).
▪ Verkaufsbetrag und Umsatzsteuer (anwendbar).

o Übertragen Sie diese Daten an Stripe.

• Berichtserstellung:
o Nutzen Sie Stripe, um Berichte über die Umsätze der Anbieter zu erstellen, die

den Finanzämtern bereitgestellt werden können. Diese Berichte sollen
enthalten:

▪ Gesamtsumme der Verkäufe pro Anbieter.
▪ Gesamtsumme der Umsatzsteuer (wird erhoben).

• Meldung der Umsätze:

o Space800x muss eine Plattformumsatzmeldung einreichen. Stripe kann diese
Berichte in der Regel automatisch generieren und einreichen. Bitte das
veranlassen.

➔ Sprich: sowohl die hinterlegten Daten samt der USt-IDs der Käufer als auch die
Steuerinformationen der Anbieter und die von Space800x sollen nun direkt an Stripe
übermittelt und dort gespeichert werden können:
https://docs.stripe.com/tax/registrations-api

•

• Steuer-ID Abgleich und ISO-Codes:

Links: Komponenten Steuereinstellungen und Steuerregistrierungen

https://docs.stripe.com/tax/registrations-api
https://docs.stripe.com/connect/supported-embedded-components/tax-settings
https://docs.stripe.com/connect/supported-embedded-components/tax-registrations

29

Schritt 3: Anbieter-Compliance sicherstellen

• Stripe-Funktionalitäten für Anbieter erweitern:
o Stellen Sie sicher, dass Anbieter ihre Steuererklärungen direkt über Stripe

abwickeln können (siehe vorherige Schritte zur Anbieteranbindung).
o Dies entlastet Sie von der Verantwortung, die Umsatzsteuer der Anbieter zu

berechnen oder abzuführen.

Schritt 4: Rollen und Verantwortlichkeiten

• Space800X Verpflichtungen:
o Melden und zahlen von Umsatzsteuer auf unserer Plattformgebühren.
o Stellen Sie sicher, dass alle über Plattform abgewickelten Anbieterumsätze den

Finanzämtern gemeldet werden.

• Anbieterpflichten:
o Die Anbieter bleiben für die Abführung ihrer Umsatzsteuer dennoch selbst

verantwortlich.
o Wir unterstützen sie dennoch durch Stripe, ohne deren Steuerlast selbst zu

tragen oder abzuführen.

Technische Umsetzung mit Stripe

Stripe kann für beide Anforderungen eingesetzt werden:

• Plattformgebühren (Einnahmen Space800X):
o PayPal zieht unsere Plattformgebühren inkl der USt. für uns ein
o Alle Stripegebühren müssen von Paypal ebenfalls für uns von Paypal eingezogen

werden. Die Paypal-Gebühren die hierfür entstehen muss Anbieter ebenfalls
dafür bezahlen.

o Space800X erstellt auch die Gebührenrechnungen an die Anbieter s.u.

• Anbieterumsätze:
o Erfassen Sie alle Transaktionsdaten unserer Anbieter und übertragen Sie diese an

Paypal und in die vorgesehenen Tabellen in unserem System.
o Paypal generiert Berichte, die für Steuerzwecke genutzt werden können.

Gebühren
Alle Gebühren von Stripe oder PayPal trägt der Anbieter und werden von PayPal vom Umsatz
direkt abgezogen und an Stripe direkt von Space800x bezahlt.

30

Stripe-Filing-Service aktivieren:

Nutzen Sie Stripe, um die Steuererklärungen für Ihre Plattformgebühren und ggf. die Anbieter-
Meldungen automatisch einzureichen.

Links und Dokumentation

Hier finden Sie eine konsolidierte Liste aller relevanten Links und Dokumentationen, die für die
Implementierung notwendig sind:

1. Stripe Tax:

Stripe Tax API

List Tax Codes API

https://docs.stripe.com/tax/tax-codes?locale=de-DE&tax_code=Paperwork

https://docs.stripe.com/api/tax_codes/list

https://docs.stripe.com/tax/tax-for-platforms

https://docs.stripe.com/connect/supported-embedded-components/tax-settings

https://docs.stripe.com/connect/supported-embedded-components/tax-registrations

https://docs.stripe.com/tax/registrations-api

OSS und Steuerregistrierung mit Stripe Tax

2. VIES API: VIES API
3. e-Invoice-Lösungen: siehe unten
4. PayPal Developer: PayPal Developer und

](https://developer.paypal.com/docs/api/overview/)

https://stripe.com/docs/tax
https://stripe.com/docs/api/tax_codes/list
https://docs.stripe.com/tax/tax-codes?locale=de-DE&tax_code=Paperwork
https://docs.stripe.com/api/tax_codes/list
https://docs.stripe.com/tax/tax-for-platforms
https://docs.stripe.com/connect/supported-embedded-components/tax-settings
https://docs.stripe.com/connect/supported-embedded-components/tax-registrations
https://docs.stripe.com/tax/registrations-api
https://stripe.com/docs/tax/oss
https://ec.europa.eu/taxation_customs/vies/
https://developer.paypal.com/
https://developer.paypal.com/docs/api/overview/

