✅ PROJECT TASK LIST — Squat Biomechanics Vision ML System
(Structured by phases and deliverables)

PHASE 0 — Discovery & System Design
0.1 Requirements & Technical Alignment
· Review RFP and confirm all functional & non-functional requirements.
· Define acceptance criteria:
· Keypoint accuracy
· Angle error tolerance
· FPS targets on iOS
· Cloud inference latency
· Rep detection accuracy
· Finalize list of biomechanical parameters to measure:
· Depth
· Knee valgus/varus
· Torso lean
· Hip shift
· Lumbar rounding
· Asymmetry
0.2 Architecture Planning
· Design end-to-end architecture (AWS + iOS + SDKs).
· Define CoreML and cloud model responsibilities.
· Decide pose model families (baseline + high-precision cloud model).
· Plan model conversion workflow (PyTorch → ONNX → CoreML → quantization).
· Prepare infrastructure plan (SageMaker, S3, API Gateway, CloudFront, IaC).
0.3 Data Plan
· Specify dataset requirements:
· Number of videos
· Camera angles
· Wrong-form variations
· Lighting environments
· Clothing/body type diversity
· Select labeling tools (CVAT / Label Studio).
· Define annotation guidelines (keypoints + biomechanical markers).

PHASE 1 — Pose Estimation & Core Kinematics (POC)
1.1 Pose Estimation Model
· Select initial model (MoveNet / BlazePose / RTMPose).
· Evaluate pre-trained model on sample squat videos.
· Fine-tune model on domain-specific data if needed.
· Implement evaluation metrics (OKS, keypoint stability).
1.2 Angle & Joint Kinematic Computation
· Implement angle calculations for:
· Hip
· Knee
· Ankle
· Torso
· Lumbar curvature
· Implement smoothing filters:
· Savitzky–Golay
· One-Euro
· Optional Kalman filter
· Validate angle accuracy against sample labeled frames.
1.3 Rep Detection Engine
· Implement:
· Eccentric phase detection
· Bottom position detection
· Concentric phase detection
· Rep completion
· Add rep validity logic:
· ROM thresholds
· False trigger rejection
· Compute rep metrics:
· Eccentric / concentric duration
· Angular velocity
· ROM utilization
· Sticking point detection
1.4 POC Demonstration
· Generate overlay demo:
· Skeleton
· Angles per frame
· Rep markers
· Produce JSON output for one full set.

PHASE 2 — Biomechanics Correction Engine
2.1 Rule-Based Biomechanical Checks
Implement thresholds & logic for:
· Depth violation
· Knee valgus/varus
· Excessive torso lean
· Lumbar flexion (rounding)
· Hip shift
· Heel lift / poor ankle mobility
· Side-to-side asymmetry
2.2 ML-Based Movement Scoring
· Build normalized time-series representation per rep.
· Implement trajectory comparison (cosine similarity).
· Train small ML model for squat form score.
· Calibrate scoring ranges (0–100).
· Validate scoring against expert-labelled sets.
2.3 Visual Correction Output Generation
· Define visual cues:
· Color-coded joints
· Arrows for misalignment
· Angle overlays
· Highlighted muscles under abnormal load
· Create data schema for overlay elements for iOS & cloud.
· Validate that overlays match rule/ML outputs.

PHASE 3 — iOS SDK & Mobile Real-Time Pipeline
3.1 CoreML Integration
· Convert model PyTorch → ONNX → CoreML.
· Apply quantization (< 25 MB target).
· Benchmark FPS on devices (iPhone 12–15).
· Implement fallback CPU/GPU logic.
· Implement graceful degradation mode.
3.2 Real-Time Video Processing
· Build Swift pipeline:
· Frame capture
· Model inference
· Angle computation
· Rep detection
· Overlay generation
· Ensure stable 15–30 FPS performance.
3.3 iOS SDK API Design
Implement one-call API:
analyzeSquat(videoFrames)

Output includes:
· Angles
· Velocities
· Rep counts
· Form corrections
· Overlay metadata
· Confidence scores
3.4 Example App
· Build demo app demonstrating real-time analysis.
· Include overlay rendering and per-rep summary.

PHASE 4 — AWS Cloud System & Python SDK
4.1 Cloud Inference Pipeline
· Build GPU inference endpoint using:
· AWS SageMaker
· Or ECS/EKS + ONNX Runtime/TensorRT
· Set latency target: 50–150 ms/frame.
· Implement autoscaling.
· Add secure video upload to S3.
4.2 API Layer
· AWS API Gateway for mobile communication.
· Lambda for orchestration.
· Endpoints:
· Upload video
· Trigger analysis
· Retrieve results + overlays
4.3 Python SDK
· Wrap cloud endpoints in Python package.
· Provide identical output structure to iOS SDK.
· Include documentation + examples.
4.4 Infrastructure-as-Code
· Terraform or CloudFormation deployment script.
· CI/CD pipeline for model + app updates.

PHASE 5 — QA, Stress Testing & Optimization
5.1 Testing Scenarios
Test system under:
· Mixed lighting
· Handheld camera movement
· Different angles (front, side, oblique, high/low)
· Different body types
· Clothing variations
· Gym distractions/occlusions
5.2 Accuracy Validation
· Keypoint OKS
· Angle error per joint
· Rep detection accuracy
· Form error detection (precision/recall)
· Movement score consistency
5.3 Performance Validation
· iOS FPS vs device models
· Cloud throughput under load
· End-to-end latency
5.4 Fixes & Optimization
· Address jitter
· Tune model thresholds
· Improve overlays
· Enhance robustness under real gym conditions

PHASE 6 — Deliverables & Documentation
6.1 Deliverables
· Full architecture documentation
· All model checkpoints (cloud + CoreML)
· iOS SDK + example app
· Python SDK
· Correction engine spec
· QA report
· Deployment documentation
· One-year maintenance plan (if required)
6.2 Handover
· Code handover
· Training for internal engineers
· CI/CD + infra access setup


